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Noise in hysteretic systems and stochastic processes on graphs
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It is shown that the theory of stochastic diffusion processes on graphs is a natural tool for the analysis of
noise in hysteretic systems. In particular, by using this theory, analytical expressions for stationary character-
istics of random outputs of some hysteretic systems are derived.

PACS numbgs): 02.50.Ey, 02.50.Fz, 02.50.Ga

[. INTRODUCTION model is constructed as a“weighted superposition” of rect-
angular loop operators that are individually “driven” by the

It is well-known that hysteretic systems exhibit randomsame thermal noise process. In the paper, the random output
spontaneous switchings. These switchings are usually attriprocesses of rectangular loop operators are first analyzed and
uted to the presence of internal noise as well as to the muthen this analysis is applied to the study of random output
tiplicity of metastable states in hysteretic systems. Thus, outProcesses of the Preisach model.
puts of hysteretic systems are random processes that can be
viewed as hysteretic transformations of internal noise pro- Il. TECHNICAL DISCUSSION
cesses. Since hysteretic systems are endowed with memory, ) ] ) ) ) -
the random outputs are not Markovian processes even if ran- To start the discussion, consider hysteretic nonlinearities,
dom inputs are simplest Markovian processes. However, by/hich are represented by rectangular loop operajggs(see
considering these outputs jointly with internal noise pro-Fid- 1. The rectangular loop operator is mathematically de-
cesses, one sometimes arrives at multicomponent Markovidfed as follows:
processes. These Markovian processes are defined on graphs.

For this reason, the theory of stochastic processes on graphs 1= YapXt @)
is an appropriate tool for the analysis of noise in hysteretic .

systems. The theory of stochastic processes on graphs has 1 if x> e,

been only recently developédi_] and applied to the study of —1 if x<p,

random perturbations of Hamiltonian dynamical systé#js = _ )
The main contribution of the paper is to demonstrate that the 1 if xe(B,@) and x; =a,
mathematical machinery of this theory is naturally suitable —1 if xe(B,@) and Xr(t)::B7

for the analysis of random outputs processes of certain hys-
teretic systems. As a by-product of this demonstration, we
derive analytical expressions for stationary characteristics of
these processes. These expressions are of interest in th8lr
own right.

herer(t) is the value of time at which the last threshéid

B) was attained.

It is apparent thafy,; are the simplest hysteretic opera-

| tors. Nevertheless, they are used as the main building blocks

The study of noise in hysteretic systems is of direct re . o .
evance to the modeling of thermal relaxations in hysteretiéOr complicated gnd more or less reahst.lc hysteresis quels
uch as the Preisach mod¢&4]. For this reason, certain

materials and systems. In magnetism, these thermally acty i - .
vated relaxations are commonly called “aftereffect” or results obtained fo¥,,; operators are directly relevant to the

“viscosity,” while in the area of superconductivity they are Preisach models. In addition, random switchingsy op-
known as “creep.” The essence of these thermal relaxations

is gradual(slow) temporal variations of output variablé€®r iv
instance, magnetizatiprat constant in time external condi-
tions (magnetic fields These gradual temporal output varia- +19----

tions are driven by internal thermal noise processes. For this
reason, these output variations can be vieyaedl modelley
as random output processes of hysteretic systems. The ther- B
mally activated relaxations are becoming increasingly impor-
tant in magnetic data storage technology, where these relax-
ations corrupt(over time the recorded information and, in
this way, negatively affect the long-time reliability of data -1
storage.

It has been previously suggesti®] to use the Preisach
model of hysteresis driven with a stochastic input as a model FIG. 1. Rectangular hysteresis loop that represents the operator
for thermal relaxations in hysteretic systems. The Preisach,gx; .

Xt
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Is i=+1 dflk
[ — = =0.
F Mgy =0 =0 v
]
P Here,f|k:f|,k, summation is performed over all edges con-

nected to a graph verte®;, while the derivatives are taken
along the edges in outward directions with respedDio It
is known[1] that constants,; are (roughly speakingpro-

erators may be of interest in their own right in those areas o ortional to the probabilities that the process .W'” move
rom vertexO; along the edgek,. Itis clear that in our case

information technology where rectangular loop nonlinearitie : . o
vy 9 P there is zero probability that the procegswill move from

are used for data storage. h . | the edad hile th d i
In the sequel, a noise processis assumed to be de- e vertexp along the edgd,, while the random motions
scribed by the Ito stochastic differential equation: along Fhe _edgegl and|, are equally probable. The ?'m"ar
assertion is valid for the vertex. As a result, we arrive at

FIG. 2. Four edge graph on which two component proggss
defined.

dx,=b(x)dt+a(x)dW,. (3)  the following interface conditions:
whereW, is the Wiener process, while and o are known f?fll dfl2 0|f|3 df|4
functions. x| Tax | ax | Tax | ®
This noise leads to random switching of the rectangular A B “ “

loop operatory,;. Thus, the output, is a random binary \yhile the values of the derivativestf

_ > ! 1./dx| g anddf, /dx],
process. This process is not Markovian. However, the twqg . . . 8 : 2
S . . o are entirely arbitrary. It is understood that differentiation in
component procesg= (i;,X,) is Markovian. This is because

the rectangular loop operators describe hysteresis with Ioczg?) Is performed in the direction of increasing valuesof
memory. This means that joint specifications of current val- By integrating by parts in the equalit$) and by taking

ues of inout and outout uniauely define the states of thi into account the interface conditio8) and the choice in-
hysteresisp P quely Sherent inf, df, /dx|z anddf, /dx|,, one finds that the tran-

The two component procegisis defined on the four edge Sition probability density(® satisfies the forward Kolmog-
graph shown in Fig. 2. The binary processassumes con- ©rov equation

stant values on each edbeof the above graph. This justifies 9p® 1 g2 p
the following concise notation for the transition probability P 2 3y_ (3)
p(tYIYo)lyer, =p™(t.X¥o). (4)  and the following boundary conditions:
It is obvious that p=0, p®=pla. (10
pW=p for x<pB, pW=p for x=q, It is also tacitly understood that the standaktype initial
(5) condition is imposed aj.
p@+pB=p for xe[B,a], A similar initial boundary value problem can be stated for

p@. However,p® can be also found by using formu(8).
wherep is the transition probability density of the process The solution to the initial-boundary value problei®)—

X¢, which is assumed to be known. (10) can be found in terms of parabolic cylinder functions
According to the theory of Markovian processes, the fol-and their Laplace transforms in the case whegnis the
lowing equality is valid forp®: Ornstein—Uhlenbeck procesdX,= —b(x,— Xo)dt+ o dW,)
with expected valug,. The Ornstein—Uhlenbeck process is
‘ ap™ 4 N " very appealing as a noise model because of its stationary and
k21 | f—dx= kZl fl (Lf)p"™ dx. (6)  Gaussian nature.
Tk Tk Simpler analytical results can be obtained for stationary
Here, densitiesp>) andp?) . In this case, we have to deal with the
following boundary value problem for the ordinary differen-
. , P 9 tial equation
L_EU (X)W-Fb(X)& ,
ld_ 2 (3) _i b (3) =0 (11
is the generator of the semigroup of the proogsswhile f is 2 dxz(a (0pst) dx( ()ps)=0, )

a function that is continuous on the entire graph and suffi-

ciently smooth inside the edges and that satisfies certain pS(B)=0, pP(a)=ps(a). (12
“gluing” (interface conditions ate and 8. These interface

conditions follow from the Markovian nature of the processAlthough the analytical solution to the above boundary value
y; on the entire grapfl]. In our case, the procegs‘‘spends  problem can be written out for any stationary diffusion pro-
zero time” at the graph vertices. In this situation, the inter-cessx,, below we present this solution only for the case of
face conditions can be written as folloys|: the Ornstein—Uhlenbeck process:
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P (X)=psi(X) (X, ,B),

2 (13
pst (X):pst(x)[l_@(xlaiﬁ)]!
where
b
pst(X)=\/ " e b(x7x0)2/027 (14 -
X 2, 2
eﬁ(yfxo) lo dy
B
e(X,a@,B)=— : (15
fﬁ RV

If we consider the probability current

a? dp™(x)

Jk(X)=—7 ax —b(x—%0)p™(x),
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FIG. 3. Expected values df as functions of the normalized
expected valuginormalized bias of x, for various normalized

threshold values o#.

then it is easy to conclude from formulék3), (14), and(15)
thatJ(x) = J4(x)=0, while J5(x) = — J3(x) # 0. Thus, there
exists a nonzero probability current circulating in the loop
formed by edges$; andl,. The existence of the circulating
loop current can be considered as the manifestation of the
lack of detailed balance in the two component procgss
The existence of this circulating current can be also traced to
energy losses associated with the random switchings of rect-
angular loopy,g. This dissipated energy is extracted from

f "o dy— gerfi(x), (21)
0

2 X2 302
e X erfilx)dx= — ,F5(1,1;3,2;—x?),

J

(22)

noise, which is the only source of energy present in the disWhere erfik) and ,F, are “imaginary error function” and
cussed problem. The situation here is analogous to one ob9eneralized hypergeometric function,” respectively.

served for stochastic resonance, where a feeble deterministic BY using the formulas presented above, the expected
signal alone cannot affect switchings. These switchings argaluei; and variancerizI have been computed as functions of

assisted by the internal noise and they are accompanied Rie expected-bias” ) valuex, of the input process, for the

the extraction of energy from the noifg|.
It is instructive to compute the expected valiyeof the
binary output process and its variarm:ét. It is clear that

I=Est(¥apx) =Pel(ii=1) - Pef(i=-1), (16
which is equivalent to
i=2Pgfi=1)-1. (17)
It is apparent that
P =1)= | pPdxt | pe(x)dx,  (18)
st Ut p Pst Pst )
which leads to
Tt=2{ JB psy (X)dx+ J ps()dx|=1. (19

Wheni_t is computed;zrizt can be calculated as follows:

2=1-i2, (20)

gy =
t

case of hysteretic nonlinearities represented by symmetric
rectangular loopsy, —,. The results of calculations are
shown in Figs. 3 and 4, respectively. These results are plot-
ted for normalized values of input bias=x,/a and normal-
ized values of switching threshold&=a/\, where \?
=¢?/B is the variance of the stationary distribution of the

input Ornstein—Uhlenbeck process The dependence cin

1
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Calculations are substantially facilitated by the observation FIG. 4. variance of, as functions of the normalized bias xf

that

for various normalized threshold values ®f
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Ve f+(xt) and sufficient conditions have clearly revealed the limits of
applicability of the Preisach model as well as its physical

universality within those limits. As a result, the Preisach
model has been used for the description of hysteresis of vari-
ous physical nature such as superconducting hysteresis
[4,10], mechanical hysteresis of consolidated granular mate-

rials [11-13, hysteresis of shape-memory alloys4] and

piezoceramic§l5]. Connections between the Preisach model

. and hysteresis due to random structural disorder have also

f o been establishedL6].

The Preisach model driven with a stochastic input is an
effective model for thermal relaxations in hysteretic systems.
For this reason, stochastic characteristics of the output of this
»model are of interest.

The Preisach model describes hysteresis with nonlocal
morieq 3,4]. For this reason, the output procdssannot
embedded as a component of some Markovian process.
Nevertheless, the moments ff can be computed.

FIG. 5. Hysteresis loop with “curved” ascending and descend-
ing branches.

on Xo can be interpreted in magnetics as ‘“anhysteretic
magnetization curvg6]. This anhysteretic curve depends on
the noise variance. This dependence is especially appreciat{!&e
when the noise standard deviatiaris comparable with the e
switching threshold value. . ) .
Next,gwe shall apply the obtained results to the case of From formula(25), we find the following expression for
hysteresis loop with “curved” ascending and descendingthe stationary expected value fif
branchegFig. 5). This type of hysteresis loop is exhibited, o
for instance, by Stoner—Wohlfarth particlg, 7] when the fft=f f m(a,B)Eg(YapX)da dp, (26)
applied magnetic field is restricted to vary along one direc- a=p
tion. Suppose that the loop shown in Fig. 5 is driven by theWhere E
Ornstein—Uhlenbeck procegs and we are interested in the (13)—(2
stationary distribution of the output procegs The process
y; is not a binary one. However, it admits the following
representation in terms of the binary procéssy,sx;

st(YapX:) can be evaluated by using expressions
2). If it is desired to evaluate the stationary value of
the second momerEst(ftz) of the output proces§; and its
variance, the following integral must be evaluated:

Es(f?)

:f f - f J _ ESt( A’YalBlXtA’yaZBZXt)
where the meaning df" (x,) andf ~(x,) is clear from Fig. 5. a=hrd Jaa=pe

By using formula(23) and the appropriate change of vari- X u(aq,B1)u(as,By)da; dB,da,dBs;,
ables, we obtain the following expression for the stationary
distribution densityéZ,(y) of the processy; along the de-
scending branch: whereEg(-) stands for stationary expected value.
dg*(y) To computeEsy(¥a, g, Xt¥a,p,Xt), We consider the three

r (24)  component Markovian procesg=(ii,iZ,x), where i}
y =3/0[1ﬁlxt and it2=3/a2ﬁ2xt. Depending on the relation be-

Here, g " (y) is the inverse of the functiog=f"(x). The tweenay, B, a,, andB,, this process is defined on graphs
last formula is valid forB<x<a. For x>a, densityp!®)  shown in Fig. 6. By using the same line of reasoning as
should be rep|aced bpst_ In a similar way, the density before, one can eaSin arrive at the fOlIOWing exprESSionS for
¢.,(y) along the ascending branch can be computed. the stationary densitigss(Z)|;, = p{f (x).

The results obtained fdy, ; operators can also be used to  In the first cas¢Fig. 6(@] when two rectangular loops do
compute the stationary characteristics of the output proces®t overlap 3;<a;<B,<a,), we have
f; of the Preisach model driven by the stochastic progess ® )
The Preisach model of hysteresis is constructed as aPst =Pst for k=147, pg’'(X)=ps(X)e(X,a1,B1),
“weighted superposition” of rectangular loop operators (28)

[3,4].
PO (X)=ps(X) o(X,@2,B2), p2=ps—pT,

e[ | map)rxdads. @9 oD =pu . @9)

W ) In the second casfFig. 6(b)] when two rectangular loops
It has been showpd] that the “wiping-out property” and  completely overlap §,< 8,< a,<«;), we have
the “congruency of minor loops” constitute the necessary

and sufficient conditions for the representation of actual hys- p'=pg, for k=1,8, p(x)=pe(X)e(X,a1,B1),
teresis nonlinearities by the Preisach model. In this way, the (30
Preisach model has been established as a legitimate math- @ @ - @

ematical tool[8,9]. At the same time, the above necessary Pst =Pst— Pst s Pst (X)=pst (X)@(X,a2,B82), (31

_f+(xt)_f7(xt). fH(x)+ 17 (%)
yt_ 2 |I+ 2 ’

(23

(27)

£ =p3@" (y)
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FIG. 7. Expected values df, as functions of the normalized
bias ofx; for variousay.

to deal with the three component Markovian procgsde-
fined only on the graphs shown in Fig(bd.
For the case of modéB7), formulas(26) and(27) can be

FIG. 6. Graphs on which three component procgss defined.

pP=p3—p3 D) =p2(x)0(X,a3,8,), written as follows:
®_ (2_ (7 _ o
p®=p?—p. 32 i [ e @B de 38)

Finally, in the third casdFig. 6(c)] when two rectangular
loops partially overlap 8;<B8,<a;<a,), we have

, 2 Eulth)=2 %5(“)U “Ea)Eg(FuxFox)da | da.
pX=ps for k=1,7, p@(x)=ps(X)[1—@(X,a1,B1)], 0 0

(33) (39
@B_ _ _ (2 (4) g\ — To computeE(¥,X;), formulas(13)—(22) can be used. To
Pst=PstPst s Pst () =psi(X) (X, @z, B2), (34 evaluateE (¥ ,X ¥,/ X) in (39), we first remark that
B, _(2_ (4 ®_, 4
PsU=Pst—Pst —Pst s Psi =Pst—Psi - (35 Ecl ¥uXVarX) = 2P(VuXVarX=1)—1.  (40)

It is worthwhile n(_)ting .that in the Iqszt case there is no graphrg fing P(%.%Y.%), one has to integrate the appropriate
edge corresponding tqlz —1 andif=+1 because these pgz)(x) over those edges of the graph shown in Figa) ®n

simultaneous values 6f andi? are not consistent with the \yhich % and¥,,x, have the same signs. This leads to the
definition of rectangular loops operato}rglﬁl and 3/&2,32. BY  formula:

using the above expressions fp(;‘?,Est(%lﬁlxt&azﬁzxt)
can be computed.

As an example, consider a particular case of the Preisach

model when all rectangulgy-loops are symmetricy,, _ X,

!

PR 0dx+ f P (x)dx

a

Est( YaXtVarXt) = 2[ fa

-

=%, . Mathematically, this case is obtained when the

+f p (x)dx+fa p&(x)dx
“weight” function w(a,B) has the form st ot

a

pla,B)=E(@)d(a+p), (36 [ ooodi [ puodx| -1
and the Preisach mod&5) is reduced to @)
fi= f Og(a)a/axt da. (370  The integrals in the last expression can be evaluated by using
0

formulas (30)—(32) and taking advantage of relatiori2l)

. . . . . and (22). Some sample results of calculations are shown in
For many magnetic materials, the weight functjetw,p) is , —t ’ )
usually narrowly peaked around the line= — 8. For these F19S- 7 and 8 forf” and Eg(f{), respectively. In these cal-
materials, formulag36) and (37) can be regarded as fairly culations, it was assumed théte)=1 andf;' and Eq(f2)
good approximations. At the same time, the calculations argvere computed as functions of normalized values of input
considerably simplified because, in the case of symmetribias v=xXq/a for various normalized values @fy= aq/\,
loops, any two loops completely overlap. As a result, one hasthere)? is the variance of the stationary distribution)qf
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FIG. 9. Generic graph on which multicomponent Markovian
processes are defined.

Ill. CONCLUSION

The analysis of random output processes of rectangular
loop operators driven by diffusion processes is first pre-
sented. It is observed that two componéatitput—input
processes are Markovian and they are defined on graphs. By
using the theory of stochastic processes on graphs, initial-

FIG. 8. S-econd moment (ﬁt as functions of the normalized bias boundary value prob|ems are derived for the transitional
of x; for variousa,. probability density of two componerfoutput—inpu} pro-

_ cesses. By employing these boundary value problems, ana-
The values off ' andE(f?) have been also normalized by Iytical expressions are found for stationary probability den-
\ and\?, respectively. It is worthwhile to note that, as evi- sities of the two component processes. These results are
dent from Fig. 8, the asymptotic values Bf,(f’) are equal extended to the case of hysteresis loops with “curved” as-

to 713 and coincide with asymptotic values 0??()2. This cending and descendjng branches, which_ are typical for
guarantees zero asymptotic values for variam?:e Stoner—Wohlfarth particles. The results obtained for the rect-
t

. . . angular loop operators are applied to the analysis of random
The described formalism of stochastic processes o 9 b op PP y

h be furth tended t te hiah d utput processes of the Preisach model driven with stochas-
grapns can be further extended to compute higher order may. inputs. This analysis is of physical significance because
ments of the output proceds. This extension is more or

. ! . the Preisach model driven with stochastic inputs is an effec-
less straightforward in the case of the mod@T). In this P

_ . tive model for thermally activated relaxations in hysteretic
case, the relevant multicomponent Markovian processes aleterials and systems
defined on the graph shown in Fig. 9 and, by using the same '
line of reasoning as before, we can derive the following ex-

plicit expression fop 2" Y(x) for edgesl y, 1:
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