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Noise in hysteretic systems and stochastic processes on graphs

M. I. Freidlin,1 I. D. Mayergoyz,2 and R. Pfeiffer1
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It is shown that the theory of stochastic diffusion processes on graphs is a natural tool for the analysis of
noise in hysteretic systems. In particular, by using this theory, analytical expressions for stationary character-
istics of random outputs of some hysteretic systems are derived.

PACS number~s!: 02.50.Ey, 02.50.Fz, 02.50.Ga
m
tr
u

ou
n
ro
o

ra
, b
ro
vi
ap
ap
ti

f

th
bl
hy
w
s
th

el
et
ac
or
e
on

i-
a-
th

th
o
la

n
ta

d
ac

ct-
e
tput
and

put

ies,

e-

a-
cks
els

e

rator
I. INTRODUCTION

It is well-known that hysteretic systems exhibit rando
spontaneous switchings. These switchings are usually at
uted to the presence of internal noise as well as to the m
tiplicity of metastable states in hysteretic systems. Thus,
puts of hysteretic systems are random processes that ca
viewed as hysteretic transformations of internal noise p
cesses. Since hysteretic systems are endowed with mem
the random outputs are not Markovian processes even if
dom inputs are simplest Markovian processes. However
considering these outputs jointly with internal noise p
cesses, one sometimes arrives at multicomponent Marko
processes. These Markovian processes are defined on gr
For this reason, the theory of stochastic processes on gr
is an appropriate tool for the analysis of noise in hystere
systems. The theory of stochastic processes on graphs
been only recently developed@1# and applied to the study o
random perturbations of Hamiltonian dynamical systems@2#.
The main contribution of the paper is to demonstrate that
mathematical machinery of this theory is naturally suita
for the analysis of random outputs processes of certain
teretic systems. As a by-product of this demonstration,
derive analytical expressions for stationary characteristic
these processes. These expressions are of interest in
own right.

The study of noise in hysteretic systems is of direct r
evance to the modeling of thermal relaxations in hyster
materials and systems. In magnetism, these thermally
vated relaxations are commonly called ‘‘aftereffect’’
‘‘viscosity,’’ while in the area of superconductivity they ar
known as ‘‘creep.’’ The essence of these thermal relaxati
is gradual~slow! temporal variations of output variables~for
instance, magnetization! at constant in time external cond
tions ~magnetic fields!. These gradual temporal output vari
tions are driven by internal thermal noise processes. For
reason, these output variations can be viewed~and modelled!
as random output processes of hysteretic systems. The
mally activated relaxations are becoming increasingly imp
tant in magnetic data storage technology, where these re
ations corrupt~over time! the recorded information and, i
this way, negatively affect the long-time reliability of da
storage.

It has been previously suggested@3# to use the Preisach
model of hysteresis driven with a stochastic input as a mo
for thermal relaxations in hysteretic systems. The Preis
PRE 621063-651X/2000/62~2!/1850~6!/$15.00
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model is constructed as a‘‘weighted superposition’’ of re
angular loop operators that are individually ‘‘driven’’ by th
same thermal noise process. In the paper, the random ou
processes of rectangular loop operators are first analyzed
then this analysis is applied to the study of random out
processes of the Preisach model.

II. TECHNICAL DISCUSSION

To start the discussion, consider hysteretic nonlinearit
which are represented by rectangular loop operatorsĝab ~see
Fig. 1!. The rectangular loop operator is mathematically d
fined as follows:

i t5ĝabxt , ~1!

i t55
1 if xt.a,

21 if xt,b,

1 if xte~b,a! and xt~ t !
5a,

21 if xte~b,a! and xt~ t !
5b,

~2!

wheret(t) is the value of time at which the last threshold~a
or b! was attained.

It is apparent thatĝab are the simplest hysteretic oper
tors. Nevertheless, they are used as the main building blo
for complicated and more or less realistic hysteresis mod
such as the Preisach models@3,4#. For this reason, certain
results obtained forĝab operators are directly relevant to th
Preisach models. In addition, random switchings ofĝab op-

FIG. 1. Rectangular hysteresis loop that represents the ope
ĝabxt .
1850 ©2000 The American Physical Society
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erators may be of interest in their own right in those area
information technology where rectangular loop nonlinearit
are used for data storage.

In the sequel, a noise processxt is assumed to be de
scribed by the Ito stochastic differential equation:

dxt5b~xt!dt1s~xt!dWt . ~3!

whereWt is the Wiener process, whileb and s are known
functions.

This noise leads to random switching of the rectangu
loop operatorĝab . Thus, the outputi t is a random binary
process. This process is not Markovian. However, the
component processyW t5( i t ,xt) is Markovian. This is becaus
the rectangular loop operators describe hysteresis with l
memory. This means that joint specifications of current v
ues of input and output uniquely define the states of
hysteresis.

The two component processyW t is defined on the four edg
graph shown in Fig. 2. The binary processi t assumes con
stant values on each edgeI k of the above graph. This justifie
the following concise notation for the transition probabili
density:

r~ t,yW uyW 0!uyWPI k
5r~k!~ t,xuyW 0!. ~4!

It is obvious that

r~1!5r for x<b, r~4!5r for x>a,
~5!

r~2!1r~3!5r for xP@b,a#,

wherer is the transition probability density of the proce
xt , which is assumed to be known.

According to the theory of Markovian processes, the f
lowing equality is valid forr (k):

(
k51

4 E
I k

f
]r~k!

]t
dx5 (

k51

4 E
I k

~ L̂ f !r~k! dx. ~6!

Here,

L̂5
1

2
s2~x!

]2

]x2 1b~x!
]

]x

is the generator of the semigroup of the processxt , while f is
a function that is continuous on the entire graph and su
ciently smooth inside the edges and that satisfies cer
‘‘gluing’’ ~interface! conditions ata andb. These interface
conditions follow from the Markovian nature of the proce
yW t on the entire graph@1#. In our case, the processyW t ‘‘spends
zero time’’ at the graph vertices. In this situation, the int
face conditions can be written as follows@1#:

FIG. 2. Four edge graph on which two component processyW t is
defined.
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k

lk j

d f I k

dx
U

Oj

50, lk j>0. ~7!

Here, f I k
5 f u I k

, summation is performed over all edges co

nected to a graph vertexOj , while the derivatives are take
along the edges in outward directions with respect toOj . It
is known @1# that constantslk j are ~roughly speaking! pro-
portional to the probabilities that the process will ‘‘move
from vertexOj along the edgesI k . It is clear that in our case
there is zero probability that the processyW t will move from
the vertexb along the edgeI 3 , while the random motions
along the edgesI 1 and I 2 are equally probable. The simila
assertion is valid for the vertexa. As a result, we arrive a
the following interface conditions:

] f I 1

dx
U

b

5
d fI 2

dx
U

b

,
d fI 3

dx
U

a

5
d fI 4

dx
U

a

, ~8!

while the values of the derivativesd fI 3
/dxub andd fI 2

/dxua
are entirely arbitrary. It is understood that differentiation
~8! is performed in the direction of increasing values ofx.

By integrating by parts in the equality~6! and by taking
into account the interface conditions~8! and the choice in-
herent inf, d fI 3

/dxub andd fI 2
/dxua , one finds that the tran

sition probability densityr (3) satisfies the forward Kolmog
orov equation

]r~3!

]t
5

1

2

]2

]x2 ~s2~x!r~3!!2
]

]x
~b~x!r~3!! ~9!

and the following boundary conditions:

r~3!ub50, r~3!ua5rua . ~10!

It is also tacitly understood that the standardd-type initial
condition is imposed atyW 0 .

A similar initial boundary value problem can be stated f
r (2). However,r (2) can be also found by using formula~5!.

The solution to the initial-boundary value problem~9!–
~10! can be found in terms of parabolic cylinder functio
and their Laplace transforms in the case whenxt is the
Ornstein–Uhlenbeck process (dxt52b(xt2x0)dt1s dWt)
with expected valuex0 . The Ornstein–Uhlenbeck process
very appealing as a noise model because of its stationary
Gaussian nature.

Simpler analytical results can be obtained for station
densitiesrst

(3) andrst
(2) . In this case, we have to deal with th

following boundary value problem for the ordinary differe
tial equation

1

2

d2

dx2 ~s2~x!rst
~3!!2

d

dx
~b~x!rst

~3!!50, ~11!

rst
~3!~b!50, rst

~3!~a!5rst~a!. ~12!

Although the analytical solution to the above boundary va
problem can be written out for any stationary diffusion pr
cessxt , below we present this solution only for the case
the Ornstein–Uhlenbeck process:
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rst
~3!~x!5rst~x!w~x,a,b!,

~13!
rst

~2!~x!5rst~x!@12w~x,a,b!#,

where

rst~x!5A b

ps2 e2b~x2x0!2/s2
, ~14!

w~x,a,b!5

E
b

x

eb~y2x0!2/s2
dy

E
b

a

eb~y2x0!2/s2
dy

. ~15!

If we consider the probability current

Jk~x!52
s2

2

dr~k!~x!

dx
2b~x2x0!r~k!~x!,

then it is easy to conclude from formulas~13!, ~14!, and~15!
thatJ1(x)5J4(x)[0, while J2(x)52J3(x)Þ0. Thus, there
exists a nonzero probability current circulating in the lo
formed by edgesI 3 and I 2 . The existence of the circulatin
loop current can be considered as the manifestation of
lack of detailed balance in the two component processyW t .
The existence of this circulating current can be also trace
energy losses associated with the random switchings of r
angular loopĝab . This dissipated energy is extracted fro
noise, which is the only source of energy present in the
cussed problem. The situation here is analogous to one
served for stochastic resonance, where a feeble determin
signal alone cannot affect switchings. These switchings
assisted by the internal noise and they are accompanie
the extraction of energy from the noise@5#.

It is instructive to compute the expected valueī t of the
binary output process and its variances i t

2. It is clear that

ī t5Est~ ĝabxt!5Pst
ab~ i t51!2Pst

ab~ i t521!, ~16!

which is equivalent to

ī t52Pst
ab~ i t51!21. ~17!

It is apparent that

Pst
ab~ i t51!5E

b

a

rst
~3!~x!dx1E

a

`

rst~x!dx, ~18!

which leads to

ī t52F E
b

a

rst
~3!~x!dx1E

a

`

rst~x!dxG21. ~19!

When ī t is computed,s i t
2 can be calculated as follows:

s i t
2512 ī t

2. ~20!

Calculations are substantially facilitated by the observat
that
e

to
ct-

s-
b-
tic
re
by

n

E
0

x

ey2
dy5

Ap

2
er fi~x!, ~21!

E e2x2
er fi~x!dx5

x2

Ap
2F2~1,1; 3

2 ,2;2x2!, ~22!

where er fi(x) and 2F2 are ‘‘imaginary error function’’ and
‘‘generalized hypergeometric function,’’ respectively.

By using the formulas presented above, the expec
value ī t and variances i t

2 have been computed as functions

the expected~‘‘bias’’ ! valuex0 of the input processxt for the
case of hysteretic nonlinearities represented by symme
rectangular loopsĝa,2a . The results of calculations ar
shown in Figs. 3 and 4, respectively. These results are p
ted for normalized values of input biasn5x0 /a and normal-
ized values of switching thresholdsã5a/l, where l2

5s2/b is the variance of the stationary distribution of th
input Ornstein–Uhlenbeck processxt . The dependence ofī t

FIG. 3. Expected values ofi t as functions of the normalized
expected value~normalized bias! of xt for various normalized
threshold values ofã.

FIG. 4. Variance ofi t as functions of the normalized bias ofxt

for various normalized threshold values ofã.
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on x0 can be interpreted in magnetics as ‘‘anhysteret
magnetization curve@6#. This anhysteretic curve depends o
the noise variance. This dependence is especially apprec
when the noise standard deviationl is comparable with the
switching threshold valuea.

Next, we shall apply the obtained results to the case
hysteresis loop with ‘‘curved’’ ascending and descend
branches~Fig. 5!. This type of hysteresis loop is exhibite
for instance, by Stoner–Wohlfarth particles@6,7# when the
applied magnetic field is restricted to vary along one dir
tion. Suppose that the loop shown in Fig. 5 is driven by
Ornstein–Uhlenbeck processxt and we are interested in th
stationary distribution of the output processyt . The process
yt is not a binary one. However, it admits the followin
representation in terms of the binary processi t5ĝabxt :

yt5
f 1~xt!2 f 2~xt!

2
i t1

f 1~xt!1 f 2~xt!

2
, ~23!

where the meaning off 1(xt) and f 2(xt) is clear from Fig. 5.
By using formula~23! and the appropriate change of va

ables, we obtain the following expression for the station
distribution densityjst

1(y) of the processyt along the de-
scending branch:

jst
1~y!5rst

~3!
„g1~y!…

dg1~y!

dy
. ~24!

Here, g1(y) is the inverse of the functiony5 f 1(x). The
last formula is valid forb,x,a. For x.a, densityrst

(3)

should be replaced byrst . In a similar way, the density
jst

2(y) along the ascending branch can be computed.
The results obtained forĝab operators can also be used

compute the stationary characteristics of the output proc
f t of the Preisach model driven by the stochastic processxt .
The Preisach model of hysteresis is constructed a
‘‘weighted superposition’’ of rectangular loop operato
@3,4#.

f t5E E
a>b

m~a,b!ĝabxt da db. ~25!

It has been shown@4# that the ‘‘wiping-out property’’ and
the ‘‘congruency of minor loops’’ constitute the necessa
and sufficient conditions for the representation of actual h
teresis nonlinearities by the Preisach model. In this way,
Preisach model has been established as a legitimate m
ematical tool@8,9#. At the same time, the above necessa

FIG. 5. Hysteresis loop with ‘‘curved’’ ascending and descen
ing branches.
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and sufficient conditions have clearly revealed the limits
applicability of the Preisach model as well as its physi
universality within those limits. As a result, the Preisa
model has been used for the description of hysteresis of v
ous physical nature such as superconducting hyster
@4,10#, mechanical hysteresis of consolidated granular ma
rials @11–13#, hysteresis of shape-memory alloys@14# and
piezoceramics@15#. Connections between the Preisach mo
and hysteresis due to random structural disorder have
been established@16#.

The Preisach model driven with a stochastic input is
effective model for thermal relaxations in hysteretic system
For this reason, stochastic characteristics of the output of
model are of interest.

The Preisach model describes hysteresis with nonlo
memories@3,4#. For this reason, the output processf t cannot
be embedded as a component of some Markovian proc
Nevertheless, the moments off t can be computed.

From formula~25!, we find the following expression fo
the stationary expected value off t :

f̄ t
st5E E

a>b
m~a,b!Est~ ĝabxt!da db, ~26!

where Est(ĝabxt) can be evaluated by using expressio
~13!–~22!. If it is desired to evaluate the stationary value
the second momentEst( f t

2) of the output processf t and its
variance, the following integral must be evaluated:

Est~ f t
2!

5E E
a1>b1

E E
a2>b2

Est~ ĝa1b1
xtĝa2b2

xt!

3m~a1 ,b1!m~a2 ,b2!da1 db1 da2 db2 ,

~27!

whereEst(•) stands for stationary expected value.
To computeEst(ĝa1b1

xtĝa2b2
xt), we consider the three

component Markovian processzW t5( i t
1,i t

2,xt), where i t
1

5ĝa1b1
xt and i t

25ĝa2b2
xt . Depending on the relation be

tweena1 , b1 , a2 , andb2 , this process is defined on graph
shown in Fig. 6. By using the same line of reasoning
before, one can easily arrive at the following expressions
the stationary densitiesrst(zW t)u I k

5rst
(k)(x).

In the first case@Fig. 6~a!# when two rectangular loops d
not overlap (b1,a1,b2,a2), we have

rst
~k!5rst for k51,4,7, rst

~3!~x!5rst~x!w~x,a1 ,b1!,
~28!

rst
~6!~x!5rst~x!w~x,a2 ,b2!, rst

~2!5rst2rst
~3! ,

rst
~5!5rst2rst

~6! . ~29!

In the second case@Fig. 6~b!# when two rectangular loops
completely overlap (b1,b2,a2,a1), we have

rst
~k!5rst for k51,8, rst

~3!~x!5rst~x!w~x,a1 ,b1!,
~30!

rst
~2!5rst2rst

~3! , rst
~5!~x!5rst

~3!~x!w~x,a2 ,b2!, ~31!

-
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rst
~4!5rst

~3!2rst
~5! , rst

~7!~x!5rst
~2!~x!w~x,a2 ,b2!,

rst
~6!5rst

~2!2rst
~7! . ~32!

Finally, in the third case@Fig. 6~c!# when two rectangular
loops partially overlap (b1,b2,a1,a2), we have

rst
~k!5rst for k51,7, rst

~2!~x!5rst~x!@12w~x,a1 ,b1!#,
~33!

rst
~3!5rst2rst

~2! , rst
~4!~x!5rst~x!w~x,a2 ,b2!, ~34!

rst
~5!5rst2rst

~2!2rst
~4! , rst

~6!5rst2rst
~4! . ~35!

It is worthwhile noting that in the last case there is no gra
edge corresponding toi t

1521 and i t
2511 because thes

simultaneous values ofi t
1 and i t

2 are not consistent with the
definition of rectangular loops operatorsĝa1b1

andĝa2b2
. By

using the above expressions forrst
(k) ,Est(ĝa1b1

xtĝa2b2
xt)

can be computed.
As an example, consider a particular case of the Preis

model when all rectangularĝ-loops are symmetric:ĝa,2axt
5ĝaxt . Mathematically, this case is obtained when t
‘‘weight’’ function m~a,b! has the form

m~a,b!5j~a!d~a1b!, ~36!

and the Preisach model~25! is reduced to

f t5E
0

a0
j~a!ĝaxt da. ~37!

For many magnetic materials, the weight functionm~a,b! is
usually narrowly peaked around the linea52b. For these
materials, formulas~36! and ~37! can be regarded as fairl
good approximations. At the same time, the calculations
considerably simplified because, in the case of symme
loops, any two loops completely overlap. As a result, one

FIG. 6. Graphs on which three component processzW t is defined.
h

ch
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to deal with the three component Markovian processzW t de-
fined only on the graphs shown in Fig. 6~b!.

For the case of model~37!, formulas~26! and~27! can be
written as follows:

f̄ t
st5E

0

a0
j~a!Est~ ĝaxt!da, ~38!

Est~ f t
2!52E

0

a0
j~a!S E

0

a

j~a8!Est~ ĝaxtĝa8xt!da8D da.

~39!

To computeEst(ĝaxt), formulas~13!–~22! can be used. To
evaluateEst(ĝaxtĝa8xt) in ~39!, we first remark that

Est~ ĝaxtĝa8xt!52P~ ĝaxtĝa8xt51!21. ~40!

To find P(ĝaxtĝa8xt), one has to integrate the appropria
rst

(k)(x) over those edges of the graph shown in Fig. 6~b! on
which ĝaxt andĝa8xt have the same signs. This leads to t
formula:

Est~ ĝaxtĝa8xt!52F E
2a8

a8
rst

~5!~x!dx1E
a8

a

rst
~3!~x!dx

1E
a

`

rst~x!dx1E
2a8

a8
rst

~6!~x!dx

1E
2a

2a8
rst

~2!~x!dx1E
2`

2a

rst~x!dxG21.

~41!

The integrals in the last expression can be evaluated by u
formulas ~30!–~32! and taking advantage of relations~21!
and ~22!. Some sample results of calculations are shown
Figs. 7 and 8 forf̄ t

st andEst( f t
2), respectively. In these cal

culations, it was assumed thatj(a)51 and f̄ t
st andEst( f t

2)
were computed as functions of normalized values of in
biasn5x0 /a0 for various normalized values ofã05a0 /l,
wherel2 is the variance of the stationary distribution ofxt .

FIG. 7. Expected values off t as functions of the normalized
bias ofxt for variousã0 .



y
i-

o
m
r

a
m

ex

s.

ular
re-

. By
tial-
nal

ana-
n-
are

as-
for
ct-
om

has-
se

ec-
tic

le
been
ing

s

an

PRE 62 1855NOISE IN HYSTERETIC SYSTEMS AND STOCHASTIC . . .
The values off̄ t
st andEst( f t

2) have been also normalized b
l andl2, respectively. It is worthwhile to note that, as ev
dent from Fig. 8, the asymptotic values ofEst( f t

2) are equal

to ã0
2 and coincide with asymptotic values of (f̄ t

st)2. This
guarantees zero asymptotic values for variances f t

2 .

The described formalism of stochastic processes
graphs can be further extended to compute higher order
ments of the output processf t . This extension is more o
less straightforward in the case of the model~37!. In this
case, the relevant multicomponent Markovian processes
defined on the graph shown in Fig. 9 and, by using the sa
line of reasoning as before, we can derive the following
plicit expression forrst

(2k11)(x) for edgesI 2k11 :

rst
~2k11!~x!5rst~x!)

j 51

k

w~x,a j ,2a j !. ~42!

Similar expressions can be derived for other graph edge

FIG. 8. Second moment off t as functions of the normalized bia
of xt for variousã0 .
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III. CONCLUSION

The analysis of random output processes of rectang
loop operators driven by diffusion processes is first p
sented. It is observed that two component~output–input!
processes are Markovian and they are defined on graphs
using the theory of stochastic processes on graphs, ini
boundary value problems are derived for the transitio
probability density of two component~output–input! pro-
cesses. By employing these boundary value problems,
lytical expressions are found for stationary probability de
sities of the two component processes. These results
extended to the case of hysteresis loops with ‘‘curved’’
cending and descending branches, which are typical
Stoner–Wohlfarth particles. The results obtained for the re
angular loop operators are applied to the analysis of rand
output processes of the Preisach model driven with stoc
tic inputs. This analysis is of physical significance becau
the Preisach model driven with stochastic inputs is an eff
tive model for thermally activated relaxations in hystere
materials and systems.
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FIG. 9. Generic graph on which multicomponent Markovi
processes are defined.
v.

ett.

s.
@1# M. I. Freidlin, A. D. Wentzell, Ann. Prob.21, 2215~1993!.
@2# M. I. Freidlin, Markov Processes and Differential Equation

Asymptotic Problems~Birkhauser-Verlag, Berlin, 1996!.
@3# I. D. Mayergoyz, Mathematical Models of Hysteresi

~Springer-Verlag, New York, 1991!.
@4# I. D. Mayergoyz, Phys. Rev. Lett.56, 1518~1986!.
@5# L. Gammaitoni, P. Ha¨nggi, P. Jung, and F. Marchesoni, Re

Mod. Phys.70, 223 ~1998!.
@6# G. Bertotti, Hysteresis in Magnetism~Academic, Boston,

1998!.
@7# E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. L

don, Ser. A240, 599 ~1948!.
@8# M. Brokate and J. Sprekels,Hysteresis and Phase Transition
-

~Springer-Verlag, New York, 1996!.
@9# A. Visintin, Differential Models of Hysteresis~Springer-

Verlag, New York, 1994!.
@10# I. D. Mayergoyz and T. Keim, J. Appl. Phys.67, 5466~1990!.
@11# R. A. Guyer, K. R. McCall, and G. N. Boitnott, Phys. Re

Lett. 74, 3491~1995!.
@12# R. A. Guyer, J. TenCate, and P. A. Johnson, Phys. Rev. L

82, 3280~1999!.
@13# R. A. Guyer and P. A. Johnson, Phys. Today52, 30 ~1999!.
@14# K. Wilmanski, Int. J. Eng. Sci.31, 1121~1993!.
@15# P. Ge and M. Jouaneh, Precis. Eng.17, 211 ~1995!.
@16# G. Bertotti, I. D. Mayergoyz, V. Basso, and A. Magni, Phy

Rev. E60, 1428~1999!.


